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STABILITY OF THE EQUILIBRIUM OF AN ELASTIC RING IN THE 
PRESENCE OF RAIlIAL SHEAR* 

S-1. MOISHENKO 

An exact formulation of the non-linear theory of elasticity is used to 
study the problem of bifurcation of equilibrium in a circular annulus. It 
is assumed that the inner boundray is rigidly clamped and tangential 
stresses act on the outer boundary. The material considered is isotropic 
and incompressible, with elastic Mooney potential. The subcritical state 
is determined from the exact solution of the problem of shear under finite 
deformations. After separating the variables in the equations of neutral 
equilibrium, the problem is reduced to a system of ordinary differential 
equations. The critical value of the tangential load intensity is 
determined by numerical methods. 

1. Subcritical state. Let us consider an elastic ring 1 <r< i + h rigidly clamped 
along the inner contour and acted upon along the outer contour by a tangential follower load 
whose intensity vector per unit arc length of the deformed contour has the form 

P=rkxN (1.1) 

Here k is the unit Vector OrthOgOnal to the ring plane , N is the material normal to the 
deformed contour, and the quantity T does not vary during the deformation process. Let r, e(o< 

cpdk) be the polar coordinates in the undeformed state of the body and R, @ the polar coord- 
inates of the points of the body after the deformation. We denote the orthonormal vector 
bases connected with these coordinates by e,,e, and es, a@,, respectively. We define the 
shear deformation by means of the following relations: 

R = R (r); a, = f (r) + 9 (1.2) 

From (1.2) we obtain 
C = e, (R'eR+ Rf'e& + Rr-L,eo (1.3) 

where C is the deformation gradient and the prime denotes differentiation with respect to I. 
The condition of incompressibility detC= 1 yields R'Rr-1 = 1. Integrating the last relation 
we obtain R = 7. Then using (1.3) we can write the following expressions for the Finger and 
Almansi deformation measures F and S= F-1 : 

F = eReR + $ &pa + e,e,) + V + W eOeO (1.4) 

S=eRes(i +v) +eoee-$(esee+eees); rp= Rf' 

We shall consider a homogeneous ring made OfMooneymaterial. We will write the law of 
conservation of an isotropic elastic incompressible material in the Finger form /l/ 

T = x,F -n&-ppE (1.5) 

Here T is the Cauchy stress tensor, E is the unit tensor, p is the pressure in the incompres- 
sible material not determinable by the deformation, and x1,% are the elastic material con- 
stants. Taking (1.3), (1.4) into account we reduce the equations of equilibrium to the form 

-$-=J$@?+$((x,+*). &=(@+O'R)(%+a) (1.6) 

and using the condition a*plaR do= asp/a@aR we obtain from (1.6) 

q = -2&R-*+ C*; C,, C, = coast 

Let us denote the Cauchy stress tensor components by css~Os@~ee~. Then the boundary oon- 
ditions at the ring surface will be 

ua.s = 0, as* = z, R=f+h; Q,=cp,R=i (1.7) 

Since we use here the dimensionless values of the radial variable, the quantity h represents 
the ratio of the ring thickness to its inner radius. Satisfying the boundary conditions (1.7) 
and using the formula (1.4), (1.51, we obtain the following expressions for the functions f 
and p and the components of the tensor T : 
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f=C,(P-1); cl=- ;;j,;;) , c,x 0 

p = x1 f x,CJR-~ - (1 + h)-‘1 - x2 - x&,* [3R-’ + (1 + !I-‘] 

uRR = (x, + x,)l(l + h)-b - R-‘1 C,* 

uROl = -2R-2 (x, + x2) C,; croo = (1 + 41C,*R-“) x1 - xB - y 

(1.8) 

2. Neutral equilibrium equations. To reduce the bulk of the formulas we shall 
consider a particular case of the Mooney material, namely a neo-Hookean material. The formulas 
of Sect.1 are easily transformed to this case by putting xp= 0. Let us write the equations 
of equilibrium linearized to the neighbourhood of the given stress state. We will write them 
for the incompressible body in the metric of subcritical state as follows /l, 2/: 

G.e=O; 8=x,F.tw~p(Cw)~+qqE (?.l! 
a a 

v.w=o; V=e,dAteaRdQ, 

where w is the additional displacement vector and g is an unknown function of the coordinates. 
Let us write the displacement vector w and the tensor 8 in the basis ee.eo, intheir compon- 
ent form 

w= UeRTUeQ; e=e,ReRe,feR*ege*f 

Then the equations of neutral equilibrium (2.1) written in polar coordinates will take the 
form 

“RR 

dX+ 

eRR - ‘@@ ae@R 
+--0 

ae,, 

R&D-’ rf 

‘R. + eaR aBQo 

A R +- -0 RaQ, - 
(2.‘) 

-g+++&=o 

The last equation in (2.2) represents the condition of incompressibility. Using (1.2) and 
(1.4) we obtain the following expressions for the components of the tensor 9 in terms of the 
displacement vector components: 

eRR=X1 [$j-+(&--~)\ + P$+P (2.3) 

e RQ=% l-i&+ s(-g+u)] 7.+($-v) 

e 
1 

au 
OR=%1 *m+f **+ l(& -v)l + & 

e ~($+u)1+$(-$+.)+* 

Substituting (2.3) into (2.2) we obtain a system of partial differential equations in w,v,~. 
The system clearly has solutions of the form 

iaa ,, = (i (R)kaQ, u = V (R) eia*, q = x,Q (R) e (2.4) 
Since the solution is periodic with respect to the angular coordinate, GL is an integer. Solu- 
tions (2.4) enable us to reduce the system of partial differential equations to a single, 
fourth-order ordinary differential equation 

@')+ u"'(6S-I _ i4C,sS-a) + U' [R-s (S-2d) - 4a*C,*R~I+ (2.5) 
U' [iQC,aR-b (a*--i)--R-J(i + 2us)+ 12dC1' R-'I+ 
u la% (al - i)(4ClrS-8 + R-4) + (1 - a*)(R-‘ + [4aCIR?I = 0 

Using the formula for varying the oriented plane /l/ and relation (l.l), we obtain the bound- 
ary conditions at the outer ring contour 

Taking into (2.3), (2.4), we can (2.6) in form 

U" (I' ((1 N-1 -1fa (1 + + 2c, + V)ll 
(I (a’ 1) (i h)_’ = 

(2.7) 

CT U’ (-3 -f- i)(i h)-* + IC,r (1 h)-’ + f 
h)-61 ia [lOC, + h)-’ 3~ (1 h)T} + (3(1 - 

+ h)-$ ia (a* 1) [6C, + h)-L r (1 h)-Y) = 

and the of rigid along the contour R= can be as 

U'=Z.l'=O 

Thus we reduced the of stability that of a boundary problem for 
with boundary (2.7) and A numerical resembling that in 

/2/ the critical of the lead intensity values of relativeshell 
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thickness h and the parameter a. 
Direct substitution shows #at the boundary value problem for the ordinary differential 

equations is selfconjugate.Thisisensured by the existence of a potential for the stresses and 
the potential character of the external loads. In the case in question the latter condition 
holds irrespective of the follower character of the load. It can be shown that a uniform 

tangential load of the type (1.1) distributed over a closed contour is conservative, and this 
justifies the use of the static Euler method. 

The figure shows the results of computations for the neo- 
%? Hookean material. The curves corresponding to various values 

of a characterize the dependence of %. on h. We see that on 
7 reducing the ring thickness the value of the critical load 

increases for fixed a . Thus the ring becomes more stable when 

6 h decreases. When the load is increased in steps, a form of 
equilibrium characterized by large values of a occurs within 
the range of small thicknesses. For thick rings the converse 

I2 J 4 h is true. We note that the stability curves have a minimum. On 
passing the minimum point the loads increase slightly and have 
a horizontal asymptote as hdm. 

The author thanks L.M. Zubov for valuable comments. 

REFERENCES 

1. MR'E A.I., Non-linear Theory of Elasticity. Moscow, NAUKA, 1980. 
2. ZUBOV L.M. and MOISEENKO $.I., Buckling of an elastic cylinder under torsion and compres- 

sion. Izv. Akad. Nauk SSSR, MIT, No.5, 1981. 

Translated by L.K. 

PMM U.S.S.R.,Vol.48,No.l,pp.107-111,1984 OOZl-8928/84 $10.00+O.C0 
Printed in Great Britain 01985 Pergamon Press Ltd. 

EFFECT OF A SMALL DEVIATION IN THE FORM.OF THE SHELLS OF 
REVOLUTION FROM AXIAL SYMMETRY ON THEIR STATE OF STRESS* 

A.IU. POPOV and G.N. CHERNYSHEV 

The effect of small, non-axially symmetric imperfections of the middle 
surface in shells of revolution on their stresses and displacements is 
studied. A strong dependence on them is found both in statics as well as 
thermoelasticity. The general theoretical results are confirmed by a 
numerical study of the displacement and stress fieldsincylindrical and 
conical shells with small imperfections of the type f(g)eosmcp. 

1. We know that shells with free boundaries (we shall call them free shells) are in, 
general, compliant, and only weakly resist the action of external loads. However, if the 
external loads satisfy prescribed integral conditions formulated in the theorem onflexure 
/l, 21, the shells become stiff. The stiffness is, however, unstable and vanishes when there 
are minute deviations from the conditions, whereupon the shell bends and large displacements 
result. Using the static-geometrical analogy , we find that the problem of analyzing a free 
shell under external load is equivalent to the problem of computing a shell clamped along its 
boundary (we shall call it the clamped shell) in a temperature field /3/. From this, we find 
that, according to the above analogy, the appearance of instability of the stress state in 
free shells when there are small changes in external load , implies a certain instability in 
the stress state in clamped shells for small variations in the temperature load. 

We will derive asymptotic estimates which will be needed later, for the stress state in 
free and clamped shells under the action of slowly varying loads of single intensity /4/. In 
a free shell, when the conditions of the theorem on flexures do not hold, the tangential stress 
0, and the flexural stress 0% are of the order of 

2Eh (u,, us, wj-= h,-* a’0 (Rf; 0% = !a,-‘0 (R); o, = he-*0 (R) 

Here ul, I+. w are the displacement vector components, h is the half-thickness of the shell, R 
is the external load vector, a is the characteristic linear dimension, E is Young's modulus 
and h,= h/a is a small parameter. In a clamped shell we have 
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